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SECTION I 

INTRODUCTION 

PURPOSE OF THE PAPER 

This paper will explore the possibility of incorporating a 

facility for downgrading (by which we mean the transformation of 

information resident in a data set of a given security level into 

information which may reside in a data set of a lower level) in a 

secure multilevel data base system in which access control is in 

accordance with a mathematical model of secure computer systems. 

The downgrading facility will enable the data base system to support 

a sensor correlation environment. 

Within the paper, prior to the introduction of the formulary 

mechanism that permits the downgrading capability, an exposition is 

presented of the mathematical model and the security kernel upon 

which the formulary concept and formulary mechanism are superimposed. 

Then the concept and mechanism are developed and their impact upon 

the model and kernel is assessed. 

In the remainder of this introductory section we will establish 

the context of the ensuing discussion and outline the organization 

of the paper. 

THE CONTEXT 

One of the many topics under the heading of computer security 

is that of access control.  This topic, which has been pursued 

independently of others such as privacy policies and physical security, 

provides our context. 



The work done at MITRE in the area of access control centers on 

the concept of a reference monitor, which was identified by the ESD 

Computer Security Technology Planning Study Panel. [_lj •  A reference 

monitor is a hardware/software mechanism that mediates all attempts 

by subjects ("accessors") to gain access to objects ("accessees") 

within a computer system.  The mediation requires consultation of a 

data base that describes the security state of the system.  The 

reference monitor satisfies three postulates:  (1) it is invoked on 

every access attempt; (2) it is tamperproof: (3) it is small and 

certifiably correct. 

A mathematical model was constructed [2] that (1) identifies in 

abstract form a data base that describes the security state of a 

computer system; (2) defines security in terms of relations among 

elements of that data base; and (3) provides rules for dynamic alter- 

ation of that data base in a manner that preserves security and some 

other desirable properties of the system. 

A security kernel (i.e., software portion of the reference moni- 

tor) was designed for a PDP-11/45 equipped with a memory management 

unit.  The role of the security kernel is the maintenance of a 

security data base and the physical resources of the machine in 

response to requests by processes for access to objects and for 

alterations in the security data base.  The design of the security 

kernel is based upon the mathematical model of secure systems.  [3] 

Among the goals of Project 7070 is the demonstration of the 

PDP-11/45 security kernel in support of a secure multilevel data 

base system.  Some processes using this system will have the ability 

to downgrade data within the system.  The existence of such an 



ability raises several questions about the underpinnings of the data 

base system: 

Can the mathematical mode accommodate downgrading? 

Can the model be altered to do so? 

Is the security kernel hospitable to downgrading? 

What modifications are indicated in the kernel in order to 

admit downgrading? 

What aspects of downgrading are apparent to a user? 

It is to these questions that this paper is addressed. 

ORGANIZATION OF THE PAPER 

Section 2 provides brief accounts of the Bell-LaPadula model of 

secure systems and of the security kernel designed for a PDP-11/45 

that is based upon that model. 

Section 3 explores the meaning of "downgrading" and associated 

terms, defines and evaluates two approaches (on the level of mathe- 

matical model) to downgrading, and decides to use the approach which 

exploits the "trustworthy subject" concept of the model. 

In Section 4, the mechanisms of a formulary (a process which 

does downgrading) are discussed within the context of the security 

kernel.  Several design choices are described, and the effect upon 

these choices of controls already existing in the kernel are dis- 

cussed.  Kernel modifications attendant upon incorporation of a 

formulary mechanism are also explored, as is the problem of object 

integrity. 

Section 5 deals with a model of data paths, which are relevant 

to the issue of object integrity.  The model builds upon the Bell- 

LaPadula model. 



SECTION II 

THE MATHEMATICAL MODEL AND THE SECURITY KERNEL 

A BRIEF ACCOUNT OF THE BELL-LaPADULA MODEL 

In [2J, Bell and LaPadula formalized concepts of computer se- 

curity in a mathematical model of a secure computer system.  The 

elements of this model include 

objects 

subjects 

modes of access and access permissions 

security level and formal access categories 

object hierarchy 

record of current access 

access rules 

Objects are entities within a computer system to which access 

must be gained in the course of the system's use. 

Subjects are those entities that seek to gain access to 

objects. 

The basic modes of access which a subject may enjoy with 

respect to an object are the read, write, append, and execute modes. 

Access permissions for particular modes are recorded on a per- 

subject, per-object basis in an access matrix. 

Each object is assigned a security classification and formal 

access category, presumably reflecting the level of sensitivity of 

it 
As used here, "write" includes "read", while "append" is a "pure" 
write. 



the object.  Each subject has maximum and current security classifi- 

cations and formal access categories (i.e., four security descriptors 

per subject).  The set of security classifications is linearly (i.e., 

sequentially) ordered, while the collection of access categories is 

ordered by inclusion. 

The object hierarchy can be thought of as a directed tree whose 

set of nodes consists of objects in the system; this tree has a single 

root node.  Note that every object in the hierarchy (except the root 

object) has a single parent object.  The hierarchy is compatible with 

the object classification and category labels if the classification 

and category of each object are at least as high as those of its 

parent. 

The record of current access is, as its name implies, a record 

of which subjects are currently accessing which objects in which 

modes.  To clarify the distinction between current access and access 

permission, note that the former has an immediate quality (it is 

what is happening now) while the latter is indefinite (it describes 

what may be allowed to happen at some time). 

The system state consists of the access matrix, the classifica- 

tion and category labels of subjects and objects, the object hier- 

archy, and the record of current access.  It contains all security- 

related information about a computer system at a given time.  A state 

(i)  is secure if no subject is accessing (in read or write 

mode) an object whose classification or category is greater 

than the maximum classification or category of that subject; 

(ii)  satisfies the *-property if a subject may only (a) write 

an object at its current level; (b) read an object of its 

current level or a lower level; (c) append to an object 

of its current level or a higher level.  The model also 

includes a provision for trustworthy subjects, which are 



those which are exempt from *-property restrictions. 

(iii)  is compatible if the object hierarchy is compatible 

with the classification and category labels. 

Within the context of the security model, a computer system is^ 

a collection of state sequences.  The progression of a system from 

state to state is governed by the application of access rules.  An 

access rule is a function whose arguments are of the form (request, 

state) and whose values are of the form (decision, state). A request 

is made by a subject in order to: 

gain or release current access to a specified object in a 

specified mode; 

create a specified object at a specified place in the object 

hierarchy: 

delete a specified object from the system; 

give or rescind access permissions for a specified object in a 

specified mode of access to a specified subject; 

change the current classification and category of the requesting 

subject. 

A decision to grant or deny a request is made and the system 

state is modified or left unaltered according to the algorithm of the 

particular rule invoked.  The access rules do not enforce security, 

*-property, and compatibility directly; rather, they preserve these 

properties if the properties are possessed by the input state.  Thus, 

if the initial state of the system is secure, satisfies the *-property, 

and is compatible, then the system will have these qualities through- 

out its history. 

An informal interpretation of the elements described above will 

provide a link between the model and reality.  One may think of 



objects as files, and of subjects as users or user surrogates 

(processes) within the system.  (This is not an exhaustive list of 

examples.  Objects could be data or program files, input/output 

devices, messages which are sent to processes — in short, anything 

which can be accessed is an object.) 

The notions of security and *-property are intended to prevent 

compromise of information in the sense of unauthorized disclosure; 

an untrustworthy subject cannot gain a combination of access rights 

that will enable it to read a high-level object and write one of a 

lower level.  The object hierarchy models a collection of directory 

objects and non-directory objects which can be thought of as an 

abstraction of a hierarchical file system.   The access rules provide 

a mechanism by which the objects can change in number and in their 

relations with subjects.  The security level functions, the access 

permissions, the record of current access, and the object hierarchy 

all provide criteria for the application of the access rules and 

reflect the consequences of such applications. 

* 
Enforcement of compatibility prevents at least two undesirable sit- 
uations from occurring.  The first situation affects security.  If 
an unclassified object were attached to (i.e., described in) a 
secret directory, a secret process could not write directly in the 
unclassified object.  However, if the process enjoyed write access 
to the directory, it could write and alter the attributes of the 
object, thereby affecting the accessibility of the object to 
lower-level processes.  Degrees of accessibility (as observed by a 
lower-level process) could serve as a signaling alphabet and result 
in the implementation of a write-down path in violation of the 
intent of the *-property. 

The second consideration is the difficulty - disclosure problems 
aside - of using a system in which a process cannot always read the 
directories of objects it needs to use. 



Other researchers in computer security have worked on an alter- 

native model addressed to the problem of sabotage as well as models 

concerned with compromise (unauthorized disclosure).  The sabotage 

model deals with unauthorized upward-directed modification of objects 

rather than unauthorized downward-directed disclosure.  The sabotage 

model is also phrased in terms of subjects, objects, and security 

levels, but the levels measure degrees of trust rather than degrees 

of privilege.  (For example, an unclassified compiler written by a 

person with a secret clearance might be trusted — i.e., useable — 

to compile secret code.)  In order to prevent sabotage, a subject 

may only read objects of levels equal to or above its own level, 

may only write objects of levels equal to or below its own level. 

The concept of levels of trust appears later in this paper in the 

discussion of object integrity under the name of levels of safety. 

THE PDP-11/45 SECURITY KERNEL 

This section contains an account of how the Bell-LaPadula model 

has been interpreted for the design of a security kernel for a PDP- 

11 /45 equipped with Memory Management Unit. 

Segment Objects 

The Memory Management Unit (MMU) option of the PDP-11/45 permits 

the identification and protection of one type of object, which is 

called a segment.  [4]  From the point of view of the MMU, a segment 

is a region in main memory consisting of contiguous locations and is 

of specified starting address and length.  Every memory reference by 

the processor is routed through the MMU, where (1) the address is 

translated from a virtual to a physical address, and (2) protection 

codes pertaining to the segment in which the location addressed lies are 

10 



checked and enforced.  The hardware supports enforcement of read, 

read/write, and no-access protection, where enforcement may take the 

form of traps or aborts upon detection of attempted access. 

The access rules of the model are algorithmic in form and lend 

themselves to implementation as procedures.  When these procedures 

are coded and positioned so that they may be applied for the purpose 

of access control (i.e., placed in the main memory of the computer), 

they are objects and need to be protected.  The PDP-11/45 meets this 

need for protection by providing a hierarchy of three machine states 

(or modes, or domains) called the kernel, supervisor, and user 

domains.  The hardware effects the hierarchical ordering of domains 

by: 

1) permitting the execution of certain machine instructions in 

the kernel domain only, and 

2) restricting the manner in which the instructions which pass 

control from domain to domain may operate. 

The security kernel protects itself by 

1) ensuring that its own procedures are the only ones that 

execute in kernel mode, and 

2) executing interpretively all attempts to access the security 

kernel data base that originate with processes executing outside the 

kernel. 

Interpretive execution of access attempts within the kernel per- 

mits objects accessed in the kernel domain to be portions of segments, 

whereas a directly accessed object outside the kernel must be coexten- 

sive with a single segment. 

11 



With the MMU in operation, a maximum of sixteen segments is con- 

currently accessible within each domain.  This maximum is achievable 

if a distinction is made between instruction (read/execute or read/ 

write/execute) segments and data (read or read/write only) segments, 

in which case eight segments of each type are available.  If it is 

not deemed desirable or feasible to make the distinction between 

data and instructions, then only eight segments (per domain) of a 

single undifferentiated type will be available.  (Such is the case 

for the current security kernel design.) Accommodation of a larger 

number of segments within main memory requires management of the 

segmentation registers.  In order to satisfy a need for a still lar- 

ger lumber of segments, swapping between secondary storage and main 

memory will be necessary.  With swapping in use, it is no longer 

viable to identify a segment as a region of main memory.  Rather, 

the definition of a segment (at least, one which is not permanently 

resident in main memory) must be altered, to wit: A segment is a 

collection of contiguous virtual memory locations which is identified 

by its "home" disk address, and which may be inserted into an appro- 

priately sized and protected region of main memory. 

Processes 

The type of subject recognized by the security kernel is an 

ordered pair whose components are a process and a domain.  [5]  A process, 

in turn, is identified by the kernel as operating on behalf of a 

user/project pair.  Information that describes processes is contained 

in data structures called process segments and the process table that 

are accessed in the kernel domain. 

The word "domain" has a dual meaning.  One aspect refers to the 

machine state.  In the second meaning, a domain is the environment of 

programs and data in which a process is operating.  A domain (in the 

12 



machine sense) allows construction of an address space consisting of 

up to eight concurrently accessible segments, and therefore facili- 

tates the definition of a domain in the environmental sense. 

The Security Data Base and the Segment Hierarchy 

The security data base in the mathematical model consists of an 

access matrix (which describes access permissions, or need-to-know), 

classification and category functions, a record of current access, 

and a description of the object hierarchy.  In the current security 

kernel design, this data is not centralized and monolithic, but is 

distributed through the system. 

The access matrix is stored column-wise by segment in the 

directory of a segment object.  The directories are themselves seg- 

ment objects, and as such are subject to access controls.  Access 

controls on directory segments are more restrictive than those on 

non-directories in that directories can only be accessed in the ker- 

nel domain; i.e., interpretively. 

Classification and categories for a segment object are main- 

tained in both a segment's directory and in the record of current 

access (whose interpretation will be described shortly).  A subject's 

classification and categories are recorded in the process table and 

a process segment. 

The record of current access, which is called the Active Segment 

Table, is resident in main memory and is accessed in the kernel domain. 

It contains physical (i.e., implementation) details about segments as 

well as information corresponding to elements of the model. 

Finally, the structure of the object hierarchy is described 

locally by pointers in the directories.  The "parent" of the model 

13 



corresponds to the "directory" of the kernel. 

The security and access attributes of segment objects and pro- 

cesses executing in non-kernel domains are recorded explicitly in 

data structures accessed in the kernel domain.  However, the attri- 

butes of objects (other than directories) accessed in the kernel 

domain are implicitly described by the operation of the security 

kernel. 

For example, every process may execute kernel procedures with- 

out security checking; hence, every process has read access permission 

to the security kernel procedures, and the security level of these 

procedures is the low for the system.  Furthermore, treatment of the 

seurity kernel as a privileged section limits current access to the 

kernel to the process identified as the current process.  This mecha- 

nism implies a single-process limit on entries in the record of 

current access in which the object component is a kernel procedure. 

Implicit contributions of this last-mentioned type to the security 

state information are created and destroyed by operations on the 

kernel semaphore (p's and v's, respectively). 

Further elucidation of the topic of implicit security state 

information awaits development of the security kernel validation 

effort. 

Access Rules - The Kernel Functions 

The security kernel includes over thirty procedures, approxi- 

mately half of which are callable by processes that are not operating 

in the kernel domain.  The functions that are not externally callable 

are called, either directly or indirectly, by functions that are 

callable; the noncallable functions are invisible outside the security 

kernel.  The noncallable functions deal with management of the 

computer's physical resources and will not be discussed further here. 

14 



Of the externally callable functions, some correspond to access 

rules of the mathematical model; their names are:  give, rescind, 

create, delete, getr, getw, enable, disable, dconnect.  The functions 

give, rescind, create, delete, getr, getw correspond directly to the 

access rules of the same or similar names in the model, and dconnect 

corresponds to "release" of the model.  The kernel contains no 

separate get-execute or get-append rules. Also, there is no change- 

security-level rule in the kernel since the distinction made by the 

model between maximum and current security levels has not been 

implemented. 

The functions getr and getw are invoked, respectively, when 

read/execute and write/read/execute access is desired, and their 

invocation results in entries to the Active Segment Table.  In order 

to make use of access privileges for a given segment, the segment 

must be in main memory, and segmentation registers must be loaded 

appropriately; these chores are accomplished by invocation of the 

function enable.  The function disable undoes enable.  Since enable 

and disable are externally callable, responsibility for management of 

a process' address space can be placed outside the security kernel. 

The callable functions startp and stopp deal with process crea- 

tion and destruction, respectively.  Although these functions do not 

correspond directly to any rules of the mathematical model, they are 

logically dual to the functions create (-object) and delete (-object). 

Due to this duality, they fill a need which the model did not address, 

but without departing from the spirit of the model. 

Two more callable functions which do not correspond directly to 

rules of the model but are nonetheless in accord with its principles 

are ipcsend and ipcrcv, which implement an interprocess communication 

facility.  Ipcsend effects a pure write (append) of a message from 

15 



the requesting process to a designated receiving process.  The 

message is considered to be of the same security level as the sending 

process; consequently, the level of the receiving process must be at 

least as high as that of the sending process, as is appropriate for 

read access.  The security checking is done within ipcsend and is 

accordingly omitted from ipcrcv. 

Startp may only be invoked by one particular trustworthy pro- 

cess, called the executive process.  Its security level is high for 

the system, so that it may receive messages from any process. 

Trustworthiness allows the executive process to send messages to any 

process. 

The functions p_ and v are operations on semaphores and are used 

for control of multiple accesses of processes to segments and for 

synchronization signals between processes.  These functions are also 

used to maintain the security kernel as a critical section.  That is, 

at most one process can access the security kernel at one time; this 

restriction corresponds to the strict sequentiality in the processing 

of subject requests that is employed in the mathematical model. 

16 



SECTION III 

DOWNGRADING IN THE CONTEXT OF THE BELL-LaPADULA MODEL 

INTRODUCTION 

Definition of Downgrading 

In the context of the model downgrading refers to the construc- 

tion or use of an information path from a given object to one that 

has either a lower classification or whose categories form a proper 

subset of the categories of the given object.  Such action can take 

any one of several forms. 

Downgrading Approaches 

One method of downgrading consists of overriding the current 

security level description of an object and writing a new description 

for that object.  This method of downgrading will be referred to as 

"level-change".  Declassification of paper documents by level-change 

is done on a prescribed schedule as described in [6] . 

Writing information with a relatively high security level into 

an object of a lower level is another way of downgrading information. 

This method will be referred to as "write-down". 

Sanitization 

"Sanitization" is a third downgrading concept, but it is not 

wholly distinct from the two given above.  It consists of transform- 

ing information in such a way that the resultant is less sensitive 

than the original.  It is not distinct from level-change and write- 

down for two reasons. 

17 



First, sanitization can be superimposed on either form of down- 

grading discussed above.  With the level-change method, sanitization 

is a single-level procedure that precedes the actual downgrading, 

according to the following scheme: 

1) Sanitizer reads information, transforms it, and writes 

the resultant information in an object whose level is equal to that of 

the information read. 

2) The security-level description of the object in which the 

resultant information resides is changed. 

With the write-down method, sanitization and downgrading are done 

concurrently, with the sanitizing agent interposed between the ori- 

ginal information and the object into which the resultant information 

is written.  (See Figure 1 for a schematic comparison.) 

high level 

sanitize 

low level 

B 

>'  level-change    v' 

•R B 

sanitize 
during 
read-high-write-low 

Figure 1.  Temporal Interpretations of Sanitization 

A second aspect of sanitization is the flexibility of the term 

"transformation".  The computation of statistical measures of a popu- 

lation will provide an example of the range of meaning of this word. 

Suppose a file contains the names and weights of a certain group of 

18 



men.  One could transform the data in the file variously by: 

computing the mean of the weights; or 

grouping the weights into intervals and drawing a histogram; or 

listing the men's names in ascending order of their weights; or 

duplicating the file (the identity transformation). 

That is, data can be blurred to widely varying degrees, and each 

degree of blurring represents a sanitization.  Thus, a precise descrip- 

tion of sanitization is highly application-dependent. 

Internal and External Considerations 

This last observation brings us to a discussion of external and 

internal considerations for downgrading.  The Bell-LaPadula model for 

secure systems deals solely in terms of external controls.  These 

include relations among entities in a system (for example, who has 

access to what) and attributes of an entity (such as a security 

classification).  An example of an internal issue is the choice of a 

sanitizing transformation suited to the format and sensitivity of 

information to be transformed in a downgrading scheme. 

If a system design that includes a downgrading capability is to 

be at all flexible and responsive to a user's needs, some portion of 

the downgrading procedures must depend upon internal requirements. 

On the other hand, external controls have the advantage that they can 

be designed and certified at an earlier stage of development than can 

internal controls, and before the system is tied to a particular 

application. 

In view of these observations on external and internal considerations, 

the following questions are relevant: 

1)  For a given downgrading approach, what external controls can 

be devised? 
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2) How do such external controls affect the Bell-LaPadula 

model? 

It is to these question that this section is addressed. 

APPROACHES TO DOWNGRADING:  MODEL IMPACT 

In this section we will describe the forms that the two down- 

grading approaches introduced in the preceding subsection would take 

in the context of the Bell-LaPadula model of a secure computer sys- 

tem.  Relative merits will be discussed in qualitative terms.  The 

review of the Bell-LaPadula model included in the previous section 

was intended to set the context of that which follows. 

Level-Change 

The level-change approach would be grafted onto the model by 

the addition of a rule to ID,,,, the rule set of ESD-TR-73-278, Volume 
iii 

III. The level-change rule would have as arguments: 

a subject name (the subject requesting the change); 

an object name (the object whose level is to be changed); 

a classification 

a category 

(the new security description of the object) 

Given arguments of the proper form, the classification and cate- 

gory of the object referred to would be changed as requested if all 

appropriate criteria were satisfied.  These criteria are: 

1.  The desired level of the object is not above its current 

level.  This requirement, if satisfied, ensures that the level-change 

rule is security-preserving; this much is guaranteed by the Revised 

Basic Security Theorem of ESD-TR-73-278, Volume 1. 
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2.  The desired level of the object is not below that of its 

directory.  This requirement ensures the preservation of compatibility, 

which means that the security level of objects increases (or at least 

does not decrease) as one moves along the object hierarchy tree away 

from the root. 

3  The requesting subject must have write-access to the 

directory of the object whose level is to be changed.  This is nec- 

essary in order to record the change. 

4. The desired level is not below the current level of any 

untrustworthy subject which has current write-access to the object 

whose level is to be lowered.  This requirement prevents a *-property 

violation. 

5. The subject has permission to lower the object's level. 

6. The object contains no information which should not be 

accessible at the desired level of the object. 

Criteria 5 (downgrading power) and 6 (object integrity) repre- 

sent departures from the context of the model.  They warrant separate 

discussion at this point. 

Downgrading Power 

Granting permission to lower the security level of an object 

implies reference to data which does not appear in the model.  This 

data could take one (or a combination) of the following forms: 

a simple downgrading-power flag for a subject; 

a classification and category range over which an empowered 

subject may exercise its power; 

downgrading empowerment on a per-subject, per-object basis. 
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Data structures supporting these forms of permission would be 

part of an external control mechanism, and therefore could be 

written into the model.  The forms of permission listed above were 

not derived from any set of downgrading procedures in current use, 

but are means to serve solely as illustrations of the concept of 

empowerment permission.  Consequently, it may be advisable to include 

in the kernel a facility for recognition of user-defined external 

controls of this nature. 

Object Integrity 

The requirement of object integrity (that the object whose level 

is to be lowered contains no information which should not be accessi- 

ble at the desired level of the object) may strike one as being out 

of place in a discussion of modifications to the Bell-LaPadula model, 

since the use of internal characteristics for the purpose of meeting 

this requirement seems to be unavoidable.  However, the burden of 

judgment that would rest upon internal mechanisms could be lightened 

by reference to historical records of external relationships among 

subjects and objects in the system.  The value of such records is not 

confined within the level-change approach to downgrading, but extends 

to the write-down methods.  Therefore, a more detailed discussion of 

this topic will be deferred. 

Write-Down 

A write-down capability is latent in the current model of a 

secure system, and can be exercised by a trustworthy subject. 

The concept of a trustworthy subject was not introduced into 

the model for the purpose of downgrading, however.  Certain subjects 

22 



need to violate *-property in order for the system to progress — for 

example, an "answering service" process that must communicate with 

users and initialize processes of various levels.  Accordingly, 

members of a designated set of subjects would be allowed to have 

simultaneous read access to a high-level object and write access to 
* 

a low-level object. 

* 
The *-property is written in the Bell-LaPadula model in such a way 
that information paths established by untrustworthy subjects are of 
a single level or lead upwards (with respect to the ordering of 
security levels).  Since the collection of security levels is not a 
linearly ordered set, a subject that is exempted from the *-property 
may be able to "crossgrade" as well as downgrade.  As an illustra- 
tion, considering the following two-classification (secret (S) and 
top secret (TS)), two-category (Cl and C2) lattice: 

TS, Cl 

TS, C1/C2 

TS, C2 
C1/C2 

s, ci rs \& s> c2 

An information path from a TS, Cl object to a TS, C2 object pro- 
vides a crossgrading example; a TS, Cl to S, C2 path affords both 
crossgrading and downgrading opportunities; any path which can be 
traveled by following the arrows is a pure downgrading path. 

23 



The exemption would be justified by certifying that such subjects 

would not write down even though they were in a position to do so 

(hence the designation "trustworthy"). 

Although the exemption was modeled, details of its motivation 

were not.  Consequently, an additional interpretation of trustworthi- 

ness is possible.  In this interpretation, two types of trustworthy 

subjects are distinguished: 

1) those subject that are exempted from obeying the 

*-property because they will not write-down. 

2) those subjects that are exempted in order that they may 

write down. 

Subjects of the second type are downgraders.  Having identified 

the downgrading agents, which we will call formularies, we must 

decide how to control them.  (The term "formulary" is taken from 

Hoffman [7].   A formulary, in Hoffman's usage, is a special-purpose 

collection of procedures that controls access to data at any desired 

level — be it file, record, or even bit level — and whose decisions 

that affect access may be based upon the user, the terminals being 

used, the time, and the content of the data themselves.  The formu- 

lary stands between the user (or programs operating on his behalf) 

and the system programs that manipulate data items directly.  The 

aspect of the above description of a formulary that is most relevant 

to our situation is content-dependence.  (We will also use the word 

formulary to denote processes that execute such programs.)  The simp- 

lest choice (from the modeler's point of view) is to write no further 

controls into the model, but to require the formulary writer to 

assume all responsibility for the definition of downgrading power 

and the safeguarding of object integrity.  Structures which might aid 

the performance of the latter task are modeled later in this report. 
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Relative Merits of the Approaches 

A positive feature of the level-change approach is the distance 

its use places between the different functional aspects of the model. 

Sanitization and downgrading are separated, and access controls 

related to these actions are applied separately. 

A disadvantage of this approach is that dynamic alteration of 

security levels and maintenance of the *-property interfere with 

each other, so that attention to one of the two impairs the function 

of the other.  Attempts to balance the two features are likely to 

clutter the model.  For example, before the level of an object can 

be lowered, every subject with write access to that object must 

release its access in order to maintain the *-property. 

Contrastingly, if the write-down approach is adopted, no 

alteration of the model is needed, as long as it is deemed acceptable 

to place a large portion of the responsibility for the protection of 

the system during downgrading upon the formulary writer.  If it is 

decided to reserve a portion of this role for the kernel, data 

structures and record keeping routines would probably need to be 

added for support. 

Summary 

A variety of downgrading controls can be constructed, with a 

specific choice of a set of controls dependent upon: 

1) the particular downgrading procedures to be used 

2) the degree of flexibility desired in the system 

3) the degree of complexity deemed acceptable in the primi- 

tives and data structures of the system. 
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Since (1) is very vague at this stage, it would be presumptuous to 

place values on (2) and (3).  Therefore, it seems unwise to clutter 

the model with details which may later prove to be of little utility. 

Consequently, the write-down interpretation of the trustworthy 

subject feature of the model provides the favored approach to down- 

grading. 

The task before us in implementing downgrading without compro- 

mising information consists of solving once more the problem to 

which the *-property was addressed, but without allowing *-property 

enforcement as a solution.  What are needed are safeguards that are 

more sensitive to gradations of potential threats that is *-property 

enforcement.  Some suggestions for structures that will support safe- 

guards will be introduced in the subsequent sections. 
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SECTION IV 

FORMULARY CONTROLS 

Downgrading is to be achieved within the secure computer system 

designed for the PDP-11/45 by the use of a class of processes called 

formularies.  The following sections treat: 

1. the definition of a formulary 

2. controls inherent in the security kernel 

3. user-formulary communication elements 

4. user-formulary communication sequence 

5. data integrity and correctness of formularies 

THE DEFINITION OF A FORMULARY 

A formulary is a trustworthy process, and as such it is exempt 

from *-property checks.  The *-property is enforced in the mathema- 

tical model of computer security and therefore in the security kernel 

in order to prevent the construction of information paths from high- 

level objects.  It is assumed that trustworthy processes will not 

abuse their ability to construct such a path, which implies that the 

code executed by trustworthy processes must be "certified".  The 

bounds of certification will be explored later. 

In the kernel, the special status of trustworthy processes 

appears in: 

1)  the get-write (getw) function—a trustworthy process 

may write into a segment of any level up to its own level. 
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2) the interprocess-communication-send (ipcsend) function— 

a trustworthy process may send a message to a process of 

any level. 

The above characteristics implement the defining property of 

trustworthy subjects. 

CONTROLS INHERENT IN THE SECURITY KERNEL 

The controls to which arbitrary processes are subjected by the 

security kernel are those of: 

(1) security level comparisons; 

(2) access control lists: 

(3) preservation of compatibility; 

(4) *-property enforcement. 

The status of formularies as trustworthy processes exempts them from 

(4), but the other controls are still applicable.  The effects of 

these other controls are: 

(1) a process can write on segments of its own or lower 

security level; 

(2) a process can only attempt to gain access to those seg- 

ments to which it has been given specific access per- 

mission; 

(3) a segment must have a security level greater than or 

equal to that of the directory in which it is described. 

Let us posit a sequence of steps in which a formulary process is 

invoked by a user process.  We will first examine the conditions 

imposed upon the elements of such a sequence. 
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USER-FORMULARY COMMUNICATION ELEMENTS 

The elements of a user-formulary communications and downgrading 

sequence include: 

A) a user process that wishes to have some information 

transformed to information of a different security level; 

B) a segment (or segments) in which the information to be 

transformed resides; 

C) a formulary process; 

D) instructions (i.e., parameters) for the formulary, 

supplied by the user process; 

E) a segment (or segments) in which the results of down- 

grading are written; 

F) synchronization signals. 

Recall that a security level has two components, a classifica- 

tion and a set of formal access categories.  Classifications are 

ordered linearly (unclassified < confidential < secret < top secret), 

while the sets of formal access categories are partially ordered by 

set inclusion (—).     This pair of orderings give rise to an ordering 

(symbolized by <L  , as in [9])  of security levels given by 

(class.. , cat..) JS. (class„, cat„) if and only if 

class.. < class-    and cat1 £ cat„. 
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Elements A-E listed above have security levels associated with 

them (A and C as processes; B, D, E as segments or segment-resident 

information), and (F) does also if such signals are transmitted 

through interprocess communications channels.  We will refer to the 

security levels of A E as L , L , L , L , L , respectively (the 

subscripts standing for user, operand, formulary, parameter, results). 

Ignoring both model and design constraints and approaching the 

downgrading situation simple-mindedly, there are four access right 

relationships which must obtain: 

a) The user can write the parameters 

b) The formulary can read the parameters 

c) The formulary has read access to the operand segment(s) 

d) The formulary has write access to the result segment(s) 

If security level constraints are considered, the above access 

right relationships require: 

a') L = L  (untrustworthy processes write only at their own 
levels); 

*b') Lf^Lp; 

C) Lf^LQ; 

d') Lf—L   (since a formulary is trustworthy). 

* 
L^i^-L means L 5LL...  Also, Cs. means "J^ but not equal" 
f   p       p   f M 
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These relationships can be summarized graphically by 

r  / r v 

w 
u >  P 

Graph 1, 

Although the term "downgrading" suggests L E* L , this relation 

is not included as a necessary one.  Since the security levels form 

a nonlinear lattice in their ordering, "L  t* L " would prevent the 

transformation of information to a different (as opposed to merely 

lower) level. 

The relations described above can be reduced in number if 

parameters are transmitted via an interprocess communication mecha- 

nism instead of being written in a segment.  If this route is taken, 

(a), (a'), (b) , (b') above can be eliminated and replaced with 

Diagrams of this type will be used to illustrate security level/access 
X 

right combinations.  They are interpreted as follows:  4-x means that 
Y 

X has access x to Y, and the security level of X is greater than or 

equal that of Y.  The access right label (x) maY be omitted, and a 

horizontal connection indicates necessary equality of security levels. 
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(e)  The user can use an ipc channel to the formulary, which 

implies 

which yields (together with (c) and (d) the diagram 

Graph 2. 

Subsequent questions that must be considered include: 

1) How does the formulary gain access to the operand segment? 

2) How does the formulary gain access to the result segment? 

3) How does the user relate to the operand segment? 

4) How does the user relate to the result segment? 

Security levels aside, in order for the formulary to access a 

given segment Y, process X (which may be the user, the formulary 

itself, the executive, or some other process) must add the formulary 

to segment Y's access control list.  This requirement in turn implies 

that process X must write in the directory of segment Y.  If process 

X is untrustworthy, then the levels of process X and the directory 

of segment Y must be equal. 
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It may not be reasonable to expect the formulary to have 

original control over the operand.  If the user has control, then 

relative security levels and access rights are described by 

f 

Y L 
o        (do = directory of operand) 

do 

Graph 3. 

If X is not the user, then 

f 
X £ 
0 . . 

applies. 

do—*— X 

Graph 4. 
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If the result segment is specified by the user, then the user 

or some other process 2 will create and control the result segment: 

f 

v w 

w 
u •< —' dr 

w 
dr  < Z 

Graph 5, Graph 6. 

If the formulary creates and controls the result segment, then we 

have 

\ 
dr 

Graph 7. 

34 



If (for the sake of illustration) the user is to be able to 

read the result segment, then Graphs 5, 6, and 7 become 

\f   w 

r \f  w 
U>T7 

w 
dr —<—Z 

Graph 5'* Graph 6' Graph 7' 

Assuming that the disposition of 

the parameter question (Graph 1 versus Graph 2), 

the operand segment (Graph 3 versus Graph A), 

the result segment (Graphs 5, 6, 7), 

and the readability of the result segment (5, 6, 7 versus 5', 6', 7') 

are independent matters, there are 2*2*3*2 = 24 composite security 

level/access right graphs that can be drawn to illustrate relations 

among the elements in a user-formulary communication sequence. 

Hopefully, a potential for modularity exists that would allow each 

of these combinations to be built within one system. 

L U L t^ L   = L implies L = L = L u dr u u   r   dr 
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USER-FORMULARY COMMUNICATION SEQUENCES 

Regardless of the particular combination chosen from among those 

described in the previous section, three steps common to all user- 

formulary communication sequences can be identified: 

1) A user invokes a formulary, specifying the operation to 

be performed and the operand; 

2) The executive starts the appropriate formulary process, 

if necessary; 

3) The formulary operates on the operand data and trans- 

forms it. 

In this section, a sample user-formulary communication sequence 

is described which is based upon a particular (but arbitrary) 

choice of security level/access right combinations, and which in- 

cludes steps 1-3 above.  The sequence is written largely in terms 

of security kernel primitives.  The lines of the sequence are num- 

bered and labeled with letters U, E, or F according to whether the 

process executing that line is the user, executive, or formulary. 

Before presenting the sample sequence, some words of explanation 

are in order on the extent to which a user is aware of the sequence. 

It is expected that a user-oriented formulary command language and 

associated language interpreter will be devised that will limit a 

user's view of the sequence to the invocation described in (1) above. 

The lines labeled U in what follows are executed on behalf of the 

user, but are hidden from him. 

The assumption of the existence of a formulary command language 

leads to the problem of the certification of the command language 
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interpreter.  Similar questions should be pursued relative to the 

file management system, assuming that the user employs it to specify 

operands.  Discussion of this issue is postponed until the next 

section. 

The sequence that follows incorporates the following set of 

decisions: 

1) Parameters are passed in a parameter segment 

2) The user controls access to the operand segment (i.e., 

the user can write in the operand's directory) 

3) The user controls access to the result segment 

4) The user is able to read the result segment 

These decisions are summarized in Graph 8, which is a composite of 

Graphs 1, 3, and 5'. 

f 

Graph 8. 

Note that the system of two processes and six segments pictured in 

Graph 8 occupies at most three security levels, with the (untrustworthy) 
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user process and five of the segments forced to have the same level. 

We emphasize that the relations pictured in Graph 8 are a consequence 

of decisions (l)-(4) above and controls inherent in the security 

kernel. 

Finally, the sequence (with annotations to follow): 

Ul create result segment 

U2 give write access for result segment to formulary 

U3 create parameter segment 

U4 give self write access for parameter segment 

U5 give read access for parameter segment to formulary 

U6 getw and enable parameter segment 

U7 write in parameter segment: 

U7a operand segment identification and operand locations 

U7b  result segment identification 

U7c other parameters 

U8 disable and release parameter segment access 

U9 give read access for operand segment to formulary 

U10 ipesend message to formulary:  parameter segment identification 

Ull ipesend message to executive:  start formulary, if necessary 

U12 puts self to sleep. 

El ipcrcv message from user 

E2 startp formulary, if necessary 

Fl ipcrcv message from user 

F2 getr and enable access to parameter segment 

F3 evaluate segment integrity and decide whether to proceed 

F4 getr and enable access to operand segment 

F5 getw and enable access to result segment 
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F6 operate:  operand—• results 

F7 disable and release all accesses to parameter, operand, and 

result segments 

F8 ipcsend message to user:  done 

F9 stopp 

U12 ipcrcv message from formulary 

U13 getr and enable result segment 

Remarks and annotations 

It must be emphasized that this sequence is meant to serve as 

a sample of a class of sequences that could be described.  As such, 

it is subject to revision or discarding. 

U7c, F6.  These steps are completely application-dependent. 

U8, F7.  The principle which is being applied is that a process should 

release access to segments when those segments are no longer needed 

by that process. 

f 
U9.  This requires the addition of ^    ipc to Graph 8. 

u 

F3. This step poses the most difficult problems (in terms of security) 

for the user-formulary communications sequence. The topic will be dis- 

cussed more fully in the following section. 

F4, F5.  The difficulties alluded to above aside, minimal guarantee 

of integrity of the segments involved in the operations of the formu- 

lary can be effected during the operations of the formulary.  This 

guarantee takes the form of a requirement that no other process can 

write a segment while a formulary process is reading that segment. 
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The enforcement of this requirement could be accomplished in at 

least three ways.  First, one could make some modifications to 

the security kernel, either to enable or to getr/getw: 

1) formulary cannot gain access to a segment that is 

being written by another process. 

2) A process cannot gain write access to a segment that is 

being accessed by a formulary. 

The application of the above conditions depends upon an inspection 

of the connected process list of an active segment table entry. 

Alternatively, a formulary could remove other processes from access 

control lists, employing its write-down capability as needed. 

A second (and simpler) way would be for the formulary pro- 

cess to create a blank segment, copy the operand segment into the 

new segment, and operate on the copy. 

F5, F7.  Recognition of trustworthy processes is incorporated in 

the getw and ipcsend function. 

F6.  This includes a determination that the result segment of a 

level suitable for the results derived by the formulary. 

OBJECT INTEGRITY AND CORRECTNESS OF FORMULARIES 

As stated in section 1, it is assumed that trustworthy processes 

will not abuse their ability to construct paths from segments of high 

security levels to segments of a lower level.  For this assumption 

to be valid, formularies need to possess two characteristics that are 
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to some extent independent of each other: 

(a) The programs executed by formularies must be known to be 

correct in their operations; 

(b) The formulary must be able to evaluate the threats to 

which operand data has been exposed. 

An example that will distinguish between these two points relies 

upon the concept of a Trojan horse program.  Suppose that intelli- 

gence sources (agents, remote sensors) whose physical characteristics 

and observations are classified top secret gather data and transmit 

it to an intelligence data base.  Formularies act upon the TS data 

and derive information that will be used by tactical personnel with 

secret clearances.  (This sequence of events is schematized in 

Figure 2.)  One of the steps in the operation of the formulary is 

agents 

- 
remote 
sensors 

-»• TS 
files 

S 
files 

tactical 
personnel 

\ 

/ \ \ 

/ \ N 
/ 

TS classification/ 

/ 

/ 

\ 
\ 

^ 

^   S clearance 

X 
\ 

data source data 

type coordinates time observation 

region summary of activity 

formulary operation 

Figure 2.  An Operational Configuration with a Downgrading Scheme 
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the specification and fetching of the TS data upon which the opera- 

tions are to be performed.  Suppose this step is performed with the 

assistance of a general purpose file management system that contains 

a section which can masquerade as a formulary when it recognizes TS 

data.  That is, the file management system is a Trojan horse, and the 

correctness of the formulary's transformation operations cannot prevent 

the file management system from taking advantage of the trustworthi- 

ness (i.e., write-down capability) of the formulary process on whose 

behalf it executes.  Therefore, the presence of characteristic (a) 

coupled with the absence of characteristic (b) abets a situation which 

is undesirable from the standpoint of security. 

Characteristic (a) appears to be entirely application-dependent. 

Consequently, we will assume that the writers of formulary programs 

will be able to guarantee its presence, and we will address the pro- 

blems posed by characteristic (b). 

Directly posed, the question which should be abstracted from the 

above example is as follows: 

Are the contents of a given segment such that it is safe to 

apply a given sanitizing algorithm to them? Phrased in this form, 

the question demands an answer which relates to the contents of the 

segment.  Consequently, in order to solve the problem as stated, a 

formulary process must interpose (in time) between its invocation 

and the application of its transformation programs either 

(a) smart programs that can assess the suitability of the 

contents of a segment for downgrading, or 

(b) a human with such capabilities. 

Resorting to controls such as these both postpones confrontation 

with the problem and shifts the burden of its solution to the 
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formulary writer.  In order to search for an earlier resolution in 

an absolute (rather than content-relative) vein, a less direct 

question is in order:  What relationship with other subjects and 

objects (i.e., process and segments) has a given segment enjoyed 

prior to its use as an operand segment by a formulary? 

This question, insofar as it can be answered in terms of access 

rights and combinations of access rights, is independent of content. 

Thus, an attempt can be made to answer it in the presently available 

context.  We begin by reviewing the components of that context. 

The entities that must be related to each other include processes 

and segments, programs and data, and the available modes of protec- 

tion. Security levels aside, we discern at present two kinds of pro- 

cesses (trustworthy and untrustworthy) and two kinds of programs 

(certified and uncertified). Processes and programs relate to each 

other through the following observations: 

Processes seek to gain access to segments. 

Program code resides in segments. 

Trustworthy processes execute only certified programs. 

Note that the last observation does not exclude the possibility 

that untrustworthy processes may execute certified programs. 

Since all operations upon segments are effected by the execution 

of some program code, and since program code resides in segments, 

the integrity of a segment can be defined in terms of the segments 

that have "touched" it.  The access privileges enjoyed by processes 

with respect to a given pair of segments determine whether one segment 

has touched the other.  The access protections that can be afforded 

a segment by the 11/45 hardware (without the use of D registers) are 
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for no access, read/execute access, and write/read/execute access; 

execute-only is indistinguishable from read/execute.  Hence, segments 

containing pure program code cannot be treated differently from read- 

only data segments. 

If a process has read access to segment A and write access to 

segment B, then A is capable of touching (i.e., affecting) B.  Since 

this attempt at integrity analysis purposely avoids the semantics of 

a computation and deals only in access rights, no distinction will 

be drawn between possessing a capability and exercising a capability. 

Thus, we will say that A touches B if A is capable (as described 

above) of touching B. 

The aforementioned relationship is the most direct touching 

possible between distinct segments.  It can be used as a building block 

either transitively (if A touches B, and B touches C, then A touches 

C) or temporally (if a process had read-access to A and has write- 

access to B, then A touches B) to construct more complex relation- 

ships among segments. 

However, complex the relations may be, they admit of a summary 

as a one-bit "history" per segment.  Namely, if any uncertified seg- 

ment has touched a segment A (however touching might be defined), 

then the integrity of A may have been compromised.  Indeed, given 

the convention discussed above that capability = actuality, we assume 

that A has been compromised. 

This criterion for compromise may have a very restrictive effect 

on the use of formularies.  For, any process is likely to access a 

This subject is elaborated upon in terms of the Bell-LaPadula model 
in the next section. 
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low security level uncertified system program (such as a compiler or 

file management system) and a given segment concurrently, thereby 

rendering the segment unsafe for formularies to operate upon without 

the intervention of a human or automatic content analyzer.  Thus, 

the price paid for the integrity of the system may be non-functionalism. 

To relieve this condition, several alternatives are available. 

One course of action would be to certify all frequently used system 

programs.  Given the large size of such programs, this seems an 

onerous task, and one that should be avoided. 

Another way to alleviate the problem would be to label as non- 

malicious those untrustworthy processes that are "known" to be free 

of evil intentions, and to allow only such processes to invoke formu- 

laries or to touch segments that will be downgraded. This gradation 

of untrustworthy processes does not by itself speak to the problem, 

since the problem arises from potential properties of segments, not 

of processes. 

In view of this, it might be more fruitful to introduce a con- 

cept of non-maliciousness for segments.  The term "non-malicious" 

will be discarded as being misleading, for a segment which is not 

non-malicious is not necessarily the tool of a malicious agent; 

rather, it is not known to be non-malicious.  A better adjective than 

"non-malicious" is "safe".  If a segment is marked as safe, then its 

touch will not impair the segments it touches with regard to the 

application of formularies. 

The justification for attaching the safe label to a given segment 

is a matter separate from this operational definition of safety.  In 

this regard, the concept of "safe object" is analogous to that of 

"trustworthy subject", insofar as we define the latter notion in 
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terms of the exceptional properties a trustworthy subject has, without 

saying why it has those properties. A segment might merit the appell- 

ation "safe" if it were 

(a) certified; or 

(b) written by trusted personnel and touched only by other 

safe segments. 

In a refinement of (b) which has been suggested (and which is 

akin to the sabotage model mentioned in Section II), a segment would 

be safe up to a particular security level.  That is, a safe segment 

could touch segments with a security level less than or equal to the 

designated level without impairing the applicability of formularies 

to those segments.  The safe label refers to a segment and not to the 

program code it might contain.  Thus, a malicious user might be able 

to copy and alter a system program, but he could not masquerade it as 

the original, safe program unless he could assign to the segment(s) 

in which the copy resides the level of safety of the original 

segment(s). 

The usefulness of this last refinement is hampered by the deter- 

mination of the limiting security level.  If the level that defines 

the limit of safety of a segment is the level of the segment, then no 

segment may touch one of a higher level without impairing the higher 

level segment; that is, after all, the original problem which moti- 

vated the current discussion.  Thus, in order for the notion of a 

limit of safety to be useful, the limit of a segment should be 

greater than the level of that segment.  A reasonable limit to assign 

to a segment would be the level of the process that creates it.  This 

assignment is reasonable in terms of the Bell-LaPadula model with its 

concepts of current and maximum levels of subjects.  However, the 

current security kernel design recognizes only current levels for 
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processes, and constrains a process to have a level less than or 

equal that of any segment it creates.  If the assignment of a limit 

of safety of a segment were made in the manner suggested above, the 

limit would be bounded above by the level of the segment; such an 

arrangement is counterproductive.  Thus, if the idea of "limit of 

safety" is to be useful, some other procedure for the assignment of 

the limit must be devised. 

The concept of levels of safety permits the problem of the 

uncertified file system mentioned earlier to be defined away. 

Namely, if it is assumed that the segments comprising the file sys- 

tem are safe to the level of every process in the system, then the 

problem disappears (as long as the file system itself is untouchable). 

Once it has been decided to wave a magic wand over one important 

system program in this manner, the extension of the technique to 

other programs (such as compilers) can be considered. 

In summary, the maintenance of the integrity of a segment can 

be accomplished by 

(a) controls based upon access rights and security level 

comparisons and 

(b) automatic or human analysis of the contents of an 

operand segment at the time a formulary is invoked. 
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SECTION V 

MODELLING DATA PATHS 

INTRODUCTION 

In this section we will discuss the detection of threats to 

data that formularies use as operands.  The approach taken starts at 

the level of the mathematical model and consists of the construction 

of data paths (audit trails) from information contained in the 

record of current access. 

The possible use of data paths will not be closely specified 

here, since such use is highly application-dependent.  Rather, 

several levels of data paths that can be inferred from the record of 

current access will be described.  Moreover, at each level of infer- 

ence, differing degrees of detail in the data path description will 

be available. 

TWO PRINCIPLES OF PATH CONSTRUCTION 

The data path model that will be developed here relies upon two 

principles.  They are: 

1) A comprehensive record of data paths can be derived from 

observations of the record of current access. 

2) The relations essential to a description of data paths 

are those among objects.  Relations that include subjects 

only add detail to path descriptions. 

The first of these principles is explained and justified easily. 

The opportunity to move information arises only from combinations of 

access relations.  Therefore, analysis of a complete account of 
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access relations will yield all information paths.  For the moment 

we will ignore the difficult problem of the derivation of all paths. 

The most straightforward example of a combination of access 

relations that results in an information path consists of a process 

that simultaneously enjoys read access to one segment and write access 

to another.  This most obvious and direct situation does not exhaust 

all arrangements that are of interest.  Simultaneity of the access 

relations or reliance upon a single process may be omitted from the 

above example.  A path may still exist between two segments if 

access relations exist during the progress of the system that 

suffice to connect them. 

To reemphasize the first principle, regardless of the complexity 

of relations that contribute to a data path, the path can be inferred 

solely from a record of access relations.  Note, however, that the 

completeness of the data path record is directly dependent upon the 

completeness of the record of access relations. 

The second principle, that path descriptions should be object- 

based, derives from the observation that information resides in 

objects.  An object-object link is the minimal necessary evidence of 

an information path.  The identity of the subject or subjects that 

effect such a link are embellishments that are probably useful addi- 

tions to the path description, but can be done without at the lowest 

level of the description.  The same comment applies to the access 

modes that are used in the construction of a path. 
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IDENTIFICATION OF PATH TYPES 

The record of current access (the b of the model) is a collection 

of entries of the form (subject, object, access mode) that conveys 

the information that a particular subject currently enjoys a specified 

mode of access to a specified object.  If the record contains the 

pair of entries (S , 0., read) and (S , 0 , write), a path from 0. to 
i  J Ik 2 

0, may be inferred; this arrangement is a formal version of the "most 

straightforward example" of the previous subsection (Figure 3). 

It is worthwhile to describe a few variations on this theme.  If 

there are entries (S , 0, , read) and (S , 0 , write) in addition to 
m  k        m  n   

the two entries given above, then there is a path from 0 to 0 

(Figure 4).  If the third or fourth entry is recorded after the 

other entries have been made, the path from 0. to 0 exists (Figure 

5.  Further, if the first or second entry is removed, the path 

still exists as a feature of interest (Figure 6). 

A more elaborate example is indicated by Figure 7.  (Subjects 

are suppressed in Figure 7, in accordance with the principle of 

object-based paths).  Supose that at time t there are paths from 

object A to object B and from B to object C.  At time t+1 the link 

between B and C is broken; at time t+2, paths from D to A and from 

C to E are established.  Beyond time t+2, information which at one 

time lay in A may come to reside in E, so that a path from A to E 

should be noted.  However, information cannot move from D to c, so 

that path from D to C need not be noted. 
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We can characterize the types of paths described above concisely: 

1) direct  (Figure 3) 

2) indirect  (Figure 4) 

3) time-dependent  (Figures 5, 6, 7) 

Figure 7 also indicates an unuseable path, which we will call a 

4) nonpath 

FORMALIZING PATHS 

We begin by refining the principle of path derivability, as 

follows: 

Assume that every data path can be built by concatenation of direct 

paths; and that all direct paths can be inferred from the record of 
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current access. 

Thus, the manner in which direct paths are inferred from the 

record of current access is crucial to data path construction. 

Postulate the existence of a procedure that extracts direct paths 

from a record-of-current-access-like set.  Formally, such a proce- 

dure corresponds to a function. 

dD: 6-x©—•^ (ixOl x OL, where Bcjx(*xd. 
D 

That is, given a pair of objects 0., 0 , a search is made through B, 

which is a collection of entries of the form (subject, object, 

access mode), for pairs of entries 

(S±, 0 , x1),  (S±, 0k, x2) 

which indicate that there is a direct path from 0. to 0, .  When such 

a pair is found, the triple (S., x.. , x„) is used to represent the 

link between 0. and 0, .  d_(0., 0. ) is the collection of all such 
J     k   B j'  k 

triples. 

If x1 = read, x„ = write, then (S. , x.. , x„) represents the 

arrangement of Figure 3.  Values of x.. = write, x~ = read, or x, = 

x„ = read presumably would not occur in the direct path record, for 

these combinations do not promote the passing of information. 

The existence of a direct path from 0. to 0, turns on whether 
J    k 

d  (0., 0 ) contains any entries or is an empty set.  If it is 

desirable to know how a path was built, or who built it, the value of 

d  (0 , 0.) can be inspected in detail. 
B  j   k. 
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The semantics of information passage are most important at the 

level of direct paths.  Beyond that level, construction of data 

paths is largely a combinatorial and set theoretical problem.  For 

an unchanging set B, a path is formalized as a sequence 0. , 0. ,..., 
Jl  j2 

0.  of objects such that d  (0. , 0.   ) ^ empty set, p+l,...,k=l; 
jk B 2v     jP+1 

that is, there are direct paths between consecutive objects in the 

sequence. The collection of all paths derivable from B is denoted 

by P(B). 

Once again, several levels of detail are available in the use of 

data paths.  A given implementation of the data path model might 

make use of 

the existence of a path from 0.   to 0. ; 
31     Jk 

the full list of objects comprising the path; 

the subjects that effect the direct paths along the path 

from 0.  to 0  ; 
3l jk 

or the access modes available to form the direct paths 

between consecutive objects. 

As a system for which data paths are to be constructed evolves, 

the record of current access changes.  Suppose (following Bell and 

LaPadula) that the sequence of records of current access of a 

system is denoted by b  , t=0,l,2,...  A likely candidate for a 

dynamic record of data paths can be constructed by aggregating all 

records of current access and using the aggregate as the "B" needed 

for the construction of data paths.  Formally, if we denote the 
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data path record to time t by P  , then 

P(t)=P(i  b (i)) 
i=o 

Again, several levels of detail are possible in the use of this 

model. 

This model not only covers the useable paths of Figures 5, 

6, and 7, but it also includes the unuseable path of Figure 7. 

In this sense, therefore, the proposed model finds too many paths. 

However, no attempt will be made at this point to refine the model 

to eliminate such paths.  The reason for this decision is that 

Figure 7 illustrates the simplest sort of unuseable path.  The sys- 

tem of objects pictured is small, isolated, and contains no loops; 

the recognition of unuseable paths in general is a difficult problem 

whose solution would exact a high cost in complexity. 

USING THE DATA PATH MODEL 

Assume that a security kernel that is based upon the Bell-Lapadula 

model has been designed.  The first step in the design of a data path 

record is the determination of those combinations of access rights 

that constitute direct paths.  We emphasize once more that the record 

of current access must be complete with regard to the collection of 

objects.  For example, the Active Segment Table of the PDP-11/45 

security kernel is only part of the record of current access, since it 
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(the AST) only describes which processes have direct read or write 

access to one type of object (namely, segments). 

The next step is the development of an algorithm that will 

extract direct paths from the data path base (the set that has been 

called "B" to this point).  The data path base itself must be updated 

with each change in the record of current access.  The data path base 

will be a larger structure than the record of current access (in 

terms of the number of entries), and it will be searched often. 

Therefore, maintenance of the data path base includes an organization 

(and reorganization) which will facilitate searches. 

Assuming that the data path base is faithfully maintained, the 

data path record need only be recomputed or updated when it is needed, 

since the accuracy of the data path record is dependent only upon an 

accurate data path base. 

data structure and operations entry forms 

record of current access (S±, 0 , x) 

update with changes in security state 

data path base 

extraction algorithm 

direct paths 

path construction algorithm 

data path record 

(Si, 0 , x) 

(S±I xx,x2) e dB(0 , 0k) 

(0^, 0j2 0jk)ep(B) 

Figure 8.  Schematic Flow of Data Path Model 
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CONCLUSION 

Controlled downgrading by formularies requires that data is 

transformed correctly, and that transformations are only performed 

upon data which has not been mishandled prior to formulary invocation. 

The first requirement is application-dependent, but the second require- 

ment can be partially met by reference to a record of data paths that, 

in its abstract form, is phrased in terms of the Bell-LaPadula model 

of a secure system. 
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